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Abstract

Soft independent modelling of class analogy (SIMCA) is applied to identify near-infrared (NIR) spectra of ten
excipients used in the pharmaceutical industry. For each class at least 15 excipient samples were collected for the data
base, considering different batches and occasionally various suppliers. Therefore the data of the classes are not always
homogeneous. The performance of the original SIMCA method, which is usually described in the literature and also
applied by the users, carried out at two confidence levels, 95 and 99%, on original data, SNV (standard normal variate
transformation) and second derivative pre-processed data, is discussed. Reasons for the rejection rates are given. No
objects were assigned to a wrong class using SIMCA. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The identification of excipients is an important
task in the cGMP manufacture of drug products
within the pharmaceutical industry. A positive
test is required to release the excipient batches for
use in the production of clinical trial or commer-
cial batches. The identification of excipients is
performed according to the various pharmaco-
poeias, for example the Pharm. Eur., which in-

clude tests for identification [1]. These tests are
often wet chemical, with additional tests for
providing evidence of functional groups such as
aldehydes or ketones within the excipient struc-
ture. These mostly laborious compendial identifi-
cation methods present an opportunity to
improve our analyses for both time and quality
and one technique that meets these requirements
is near-infrared (NIR) spectroscopy. The applica-
tion of NIR spectroscopy is growing very fast
within the industry because it is rapid, requires
no, or very little, sample preparation and is non-
destructive [2]. In the latest European pharmaco-

* Corresponding author. Tel.: +32-2-4774734; fax: +32-3-
4774735; e-mail: fabi@vub.vub.ac.be.

0731-7085/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.

PII: S0 731 -7085 (98 )00234 -9



A. Candolfi et al. / J. Pharm. Biomed. Anal. 19 (1999) 923–935924

poeia a specific monograph on NIR is imple-
mented [1]. Moreover, the FDA (US Food and
Drug Administration) is preparing a guideline
for the applicability of NIR methods for phar-
maceutical quality assessment.

NIR spectra can be analysed and interpreted
using a variety of chemometric tools. The iden-
tification of the NIR spectra from excipient
batches requires a suitable chemometric classifi-
cation method which leads to the correct iden-
tification of unknown excipients. Several
methods are reported which can be applied for
this purpose [3–7], and in the present work
SIMCA (Soft Independent Modelling of Class
Analogy) is used. It was shown by Gemperline
et al. [3], that raw material testing by SIMCA
analysis of NIR spectra seems promising. In
SIMCA, each class is modelled separately by
PCA (Principal Component Analysis). Class
borders, defining the quality of acceptable ob-
jects, are then constructed around the PC
model. Therefore the performance of the
method depends not only on the difference be-
tween classes, but also strongly on the training
set for each class.

In the present work we focus on both the
a-error, i.e. the rejection of correct samples
from their class and the b-error, i.e. the accep-
tance of objects that do not belong to that
class. Both a- and b-errors are essential for val-
idating a database, and are vital for a successful
classification. The performance of SIMCA is
discussed on a small excipient data set, contain-
ing ten excipients. There are several variants of
SIMCA concerned with the way class borders
are defined (e.g. number of degrees of freedom,
cross-validation or not). Within this publication
the original SIMCA method is considered which
is the most often described in the literature [8–
11], and applied by the users [3,4]. Special atten-
tion is paid on the variability of the NIR
spectra within certain excipient classes, and on
what classification results can be expected in a
real life situation, when samples are coming
from different batches and suppliers. Addition-
ally, we investigate whether and how pre-pro-
cessing influences the performance of SIMCA.

2. Materials and methods

2.1. Excipients and instrumentation

An NIR database was constructed based
upon a requirement of at least 15 batches per
excipient class. Samples of the following ten ex-
cipients were collected:

Excipient Number ofClass
samples

1. Anhydrous dicalcium 17
phosphate

162. Anhydrous lactose
3. Explotab 19

22Lactose4.
5. Magnesium stearate 15
6. Methocel 18

Povidone 157.
8. Sodium lauryl sulphate 17

Starch 199.
17Avicel10.

These substances are used in the manufacture
of solid dosage forms as binders, diluents, disinte-
grates or lubricants. All the samples per class
(excipient) were obtained from the warehouse of a
pharmaceutical company. The materials were ei-
ther already on stock or received by the company
within a 9 month period. This time was spent
collecting the data. The samples came from differ-
ent excipient batches and occasionally from vari-
ous suppliers. Multiple excipient grades within
certain classes were considered, but the aim of the
study is to identify the chemical product, not its
specific grade.

The NIR spectra were collected in the reflec-
tance mode with a NIRSystems 6500 spectropho-
tometer (NIRSystem, Silver Spring, MD, USA).
Before the data acquisition, a successful system
suitability test (wavelength scale, absorbance scale
and noise) was performed. All spectra were ra-
tioed versus a Spectralon standard (99% reflective,
SRS-99-010, Labsphere, North Sutton, NH,
USA). Each spectrum is the average spectrum of
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32 scans. The spectral range used for the data
analysis goes from 1100 to 2468 nm, the data were
measured in 2 nm intervals, which results in 685
variables.

The standard sample cup (NIRSystems), was
utilised for performing the measurements. For
each excipient respectively, 7–1590.1 g of pow-
der was filled into the cup in a standard procedure
depending upon the bulk density of the material.
The corresponding amount of powder was densely
packed into the cup and compressed by closing it.
Three analysts were involved in performing the
NIR measurements.

The samples included in this database were also
submitted to pharmacopoeial tests, which have all
been passed.

2.2. Pre-processing of NIR spectra

Raw NIR-spectra often exhibit a baseline shift
or drift due to variations in the sample presenta-
tion. Different parameters can affect the spectra,
such as the stability of the instrument, tempera-
ture, humidity, the filling of the measurement cell
or the particle size of powders. Instrument perfor-
mance checks ensure compliance of the instru-
ment to rigorous specifications whilst variances in
the spectra due to different sample compaction,
and hence pathlength can be reduced significantly
using pre-processing techniques. Therefore data
pre-treatment is an important step in the data
analysis.

Two approaches to pre-process data are utilised
in this work, SNV (standard normal variate trans-
formation) [15], and second derivative [16]. SNV
seems to be suitable to remove the multiplicative
interferences of scatter and particle size. Scatter
occurs on the surface of particles and depends on
the physical nature of the material. The spectral
pathlength depends on the particle size of the
material. Using derivatives, a linear background is
removed. In the case of first derivative it is con-
verted to a constant level and in the second
derivative to zero. Here, the second derivative
transformation is utilised. In this application the
modified Savitzky-Golay convolution method,
proposed by Gorry [17], with a window width of
17 variables (i.e. 34 nm), is applied.

2.3. SIMCA

The theory of SIMCA was already extensively
discussed by several authors [8–11]. Only a short
introduction to the method is therefore presented.
In this work the method is applied in its original
form.

Each class is modelled separately based on the
similarity of the objects within the class. The
model is obtained by PCA with a certain number
of significant PCs. This is described by the follow-
ing equation for one class K,

XK=X( K+TK(nxr)VK
T (rxp)+EK(nxp) (1)

where X( K is the mean centred data matrix,
TK(nxr) the score matrix obtained for n objects
and r selected PCs, VK

T (rxp) the loading matrix
obtained for r selected PCs and p variables and
Ek(nxp) the residual matrix. The selection of the
appropriate number of PCs, r, is a crucial point in
SIMCA. Several methods are dedicated to this
purpose, but in most applications cross-validation
is performed. However, this procedure does not
always seem to be the optimal one [12–14]. We
wanted to apply the simplest possible method of
selecting significant PCs to avoid possible errors
when the method is used in a routine environ-
ment. In our study the number of PCs is therefore
selected according to the percentile of the total
variance which is expressed by each PC. The PCs
containing more than 1% of the total variance are
arbitrarily chosen for modelling. The class
boundaries, or confidence limits, are then con-
structed around the PC model. They are based on
the distribution of the distances (Euclidean dis-
tance) between the objects and the origin in the
space of the residual PCs, i.e. based on EK, where
eki

2 is the squared residual of the kth object for the
ith (latent) variable.

s0=
' %

n

k=1

%
p

i=1

eki
2 /[(p−r)(n−r−1)]

=
' %

n

k=1

%
p

i=r+1

tki
2 /[(p−r)(n−r−1)] (2)

s0 is the mean distance between the objects be-
longing to class K and the class model. With the
help of an F-test the critical distance can further
be computed at a certain level of significance (a):
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Fig. 1. Mean spectra for the ten excipients obtained from (a) original data and (b) second derivative data.

scrit=
Fcrits0
2 (3)

The choice of a has to be evaluated on the basis
of the problem under investigation and is related
to the percentile of wrongly rejected objects (a-er-
ror), which is considered acceptable. In this appli-
cation two confidence-levels, 95 and 99%, are
selected.

After the model has been developed on the
training set, new objects can be classified. For the
identification of such a new object it is projected
into the PC space defined by the PCA model and
its distance towards the class model (sk) is com-
pared to scrit:

x̃new(1xp)= x̄K+ (xnew− x̄K)VKVK
T (4)

enew=xnew− x̃new (5)

sk=
' %

p

i=1

enew,i
2 /(p−r) (6)

If skBscrit, the object is considered part of the
class for which the model was established, if the
distance is larger it is considered to be an outlier.

The procedure described above is referred to as
first part of SIMCA. Sometimes one applies a
second step in which one closes the class boxes to
detect outliers within the space of the modelled
PCs. This does not appear relevant here. Spectra
of other classes have basically a different shape
and will therefore be outlying in the residual PCs,

whereas outliers within the modelled PCs are
mainly due to new spectra which are similar to the
ones in the training class, but with higher or lower
absorbances.

2.4. Software

All methods were programmed by ourselves in
Matlab code (V.4.0) (Mathworks, Natick, USA).
For the spectral acquisition NSAS (V.3.50)
(NIRSystems) was used.

3. Results and discussion

Fig. 1(a) shows the mean spectra of all classes
for the original data. The shapes of the spectra
are quite different from each other. The spectrum
obtained from anhydrous dicalcium phosphate,
which is an inorganic substance, has very little
feature but nonetheless is useful for the determi-
nation of the moisture content in what should be
an anhydrous material. Although this excipient
class is retained for the data analysis (rather as
reference substance), it should be realised that
NIR spectroscopy alone is not sufficient to iden-
tify inorganic substances. To show the effect of
second derivative transformation, the mean spec-
tra of the pre-processed data are presented in Fig.
1(b). The baseline shifts as described previously
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Fig. 2. Spectra for anhydrous lactose (class 2) obtained from (a) original data and (b) SNV data.

have been removed by this transformation.
Derivatives emphasise small shoulders and peaks,
so that the pre-processed spectra have more pro-
nounced shapes. The spectra of anhydrous lactose
without and with being pre-processed with SNV
are shown in Fig. 2(a,b). In the original spectra a
small offset can be observed at lower wavelengths.
Towards higher wavelengths the spread of the
spectra increases. These known phenomena,
which typically occur for powdered materials due
to multiplicative effects of scatter and particle
size, are corrected by SNV producing spectra
constant over the entire spectral range, except for
1938 nm, which corresponds to a water peak [16].
Anhydrous lactose contains 0.1–0.2% of absorbed
water [18].

To study the structure of the data set and the
effect of the transformations, PCA is carried out
on the column centred, SNV and second deriva-
tive data. The PC1 versus PC2 score plots are
shown in Fig. 3(a,b,c). On the score plot for the
centred, but otherwise not transformed data (Fig.
3a), one can see that all classes are separated
along the first two PCs. The spread of the objects
within one class is rather small for some classes
(classes, 1/2/3/5/8 and 10), while for other classes
this is not the case (classes, 4/6/7 and 9). Espe-
cially the latter classes seem to be inhomogenous,
containing sub-clusters. PC1 is determined both
by the variation between and that within classes.

On the PC1-PC2 score plot for the SNV data,
displayed in Fig. 3(b), all classes are well sepa-
rated on the plane spanned by the two PCs. This
transformation clearly allows better discrimina-
tion between the groups. The within-class vari-
ance is decreased so that only the spread of the
classes 3, 6 and 7, mainly on PC2, is still rather
large. PC1 is now determined nearly exclusively
by interclass differences, except for class 6, where
two sub-clusters are separated. PC2 also describes
differences within classes. These differences are
particularly due to variations in the height of the
log (1/R) values situated around wavelength 1938
nm. This is becoming evident when interrogating
the loading plots (see Fig. 4). The highest absolute
values for the loadings on the first PC (Fig. 4a),
are located at the spectral regions where the mean
spectra of the classes are the most different, while
the highest absolute values for the loadings on the
second PC (Fig. 4b), are obtained for the charac-
teristic spectral band for water at 1940 nm.

The PC1-PC2 score plot for the second deriva-
tive data is shown in Fig. 3(c). Here, the first PC
particularly separates two classes from the others,
namely class 5 and 8. These excipients are the
only ones containing fatty acids in their molecular
structure. PC2 separates class 4 from the other
classes. The spread of class 4 on PC2 is much
larger compared to the one of the other classes.
Class 1, anhydrous dicalcium phosphate, is lo-
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cated around the zero value on PC1. Since it is an
inorganic substance the spectra contain little
information.

After the global PCA for all classes together
each class is explored separately to reveal inhomo-
geneities. The phenomena, described in Fig. 2(a)
(small offset and increasing curvature of the spec-
tra towards higher variables), occur in all classes.

The plot of the original spectra of explotab
(class 3) is shown in Fig. 5(a). The biggest varia-
tion in the spectra can be observed around wave-
length 1934 nm, a characteristic wavelength for
water. In fact, water influences the entire spectral
range, but especially two spectral regions, 1450
and 1940 nm. On the PC1-PC2 score plot of the
centred data of explotab, which is presented in
Fig. 6(a), three to four sub-clusters are displayed.
Three sub-clusters are separated along the first PC
which contains almost 80% of the total variance.
The highest absolute loading value on PC1 (Fig.
6b), is situated at wavelength 1934 nm, so that
one can indeed conclude that the variability of the
spectra in this class is mainly due to a different
water content of the samples.

The original spectra of lactose (class 4) are
presented in Fig. 5(b). Lactose is available in
several particle size degrees [18], which are all
summarised in one class here. The effect of multi-
plicative interferences due to the various particle
sizes is clearly illustrated in this figure. The spec-
tra with lower log (1/R) values over the full
spectral range are obtained from powdered mate-
rial, the ones with higher log (1/R) values from
crystalline material. As a result this data set con-
sists of one main group of spectra, two smaller
sub-clusters and one single spectrum. This data
structure can be observed on the PC1-PC2 score
plot obtained for all classes together (Fig. 3a).
SNV is able to remove multiplicative interferences
due to particle size, and as a result mainly chemi-
cal information is retained in the spectra. The
variance of the data for class 4 is much smaller
after the transformation (Fig. 3b).

The original spectra of class 6, methocel, are
displayed in Fig. 5(c). There is particularly one
spectrum which is atypical. The main spectral
differences are located around the wavelengths
1460 and 1920 nm, which correspond again to the
two principal spectral regions for water. The
grade of the sample is different compared to the
others.

As can been seen in Fig. 5(d), which gives the
plot of the spectra for the povidone objects (class
7), some of the spectra are quite unlike the major
part of the spectra of this class. Two spectra show
lower log (1/R) values over the full spectral range

Fig. 3. PC1 versus PC2 score plot for the ten excipient classes
obtained from (a) original, (b) SNV and (c) second derivative
data. The classes are labelled according to their class label
from 1–10 (see Section 2.4).
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Fig. 4. Loading plots on (a) PC1 and (b) PC2 for the SNV data.

and also a somewhat different shape. A third
spectrum is similar in shape to those two spectra,
but has higher log (1/R) values. If several suppli-
ers provide slightly different qualities of an excip-
ient, it can be manifested in such variations of the
spectra. The inhomogeneities in this class are also
noticeable on the general PC1-PC2 score plot for
all classes (Fig. 3a).

In class 9 (starch) three spectra are evidently
distinct from the rest, since their overall ab-
sorbance is higher compared to the other spectra.
The spectra are presented in Fig. 5(e). The sam-
ples may be corn starch, maize starch, wheat
starch etc., but are globally all starch. These
distinctions too can be perceived in the PC1-PC2
score plot for all classes (Fig. 3a).

The other classes, which are not discussed here
in detail, contain some inhomogeneities, but of a
lesser degree. In general one can state that some
of the dissimilarities observed in the spectra
within one class can be related to the moisture
content of the samples and/or to the particle size
and shape of the materials. The samples for each
class are obtained from different batches and
suppliers, so some natural heterogeneity in the
individual classes can be expected. Whilst this
natural variance is observed, each sample in-
cluded in the database has passed all compendial
tests and is therefore released for use in the pro-
duction. As a result all spectra are kept for the

data analysis with SIMCA, since they represent a
real life situation one encounters in the pharma-
ceutical industry and hence cannot be considered
as analytical outliers. However, checking for atyp-
ical objects must be carried out carefully, since the
samples in the database define the quality of the
classification models.

In SIMCA, a classification model (PC model) is
constructed for each class individually. In this
application we have arbitrarily decided to retain
only the PCs containing more than 1% of the
total variance for modelling. The remaining,
residual PCs, are used to build the confidence
interval around the model. The performance of
the model is evaluated by doing leave-one-out
cross-validation (LOOCV) within the correspond-
ing class. This yields the a-error, which is the
amount of correct samples, that are rejected, i.e.
not considered part of the class. Two confidence
levels are compared, 95 and 99%, which indicates
that the theoretically expected amount of wrongly
rejected samples is 5, and 1%, respectively. The
number of PCs used for modelling, the correct
classification rate (CCR) and the number of re-
jected objects (given between brackets), obtained
by LOOCV for both confidence levels, are sum-
marised in Table 1 for the original data.

For each class a PC model with maximum three
PCs is built. However, in the cases, where three
latent variables are retained, the third PC contains
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Fig. 5. Original spectra for (a) explotab (class 3), (b) lactose (class 4), (c) methocel (class 6), (d) povidone (class 7) and (e) starch
(class 9).
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Fig. 6. (a) PC1 versus PC2 score plot and (b) loading plot on PC1 for explotab (class 3).

only around 1% of the total variance. To check,
whether a latent variable explaining only such a
small part of variance influences the results, the
models are repeated with two PCs only. In the
table the results obtained for both dimensionali-
ties are separated by a ‘/’. The total variance
explained by the modelled PCs amounts from
97.65 to 99.82% for the individual classes. For
every model LOOCV is performed to determine
the actual a-error, respectively the CCR. The
CCR describes the ratio of the correctly classified

samples/the total number of samples in one class.
A CCR equal to 1 means that all samples are
correctly classified. For the 95% confidence level a
CCR between 0.67 and 0.86 is achieved, which
signifies that 14–33% of the samples are mis-
classified, i.e. rejected from their class. This is
much more than one expects, i.e. 5%. For the 99%
confidence level a CCR between 0.67 and 0.94 is
achieved, which means 6–33% rejected samples.
In three situations two models are established,
with either three or two PCs. Except for class 6,
on the 95% confidence level, better results are
obtained with the more parsimonious models, so
they should be preferred.

As already mentioned above too many objects
are misclassified. We see different reasons for
that, the first one has to do with the natural
heterogeneity and the dimension of the data set.
In LOOCV the system is perturbed by leaving out
one object at the time to estimate the classification
performance. As soon as an extreme sample is left
out, the remaining objects will not span the same
space anymore and as a result the object left out
will not be classified in this class. This is a realistic
way of evaluating the performance of the method,
since in real life situations, one must expect that
new samples with extreme characteristics will be
submitted for prediction. The results show, that
SIMCA is sensitive to dissimilarities between ob-
jects which is an advantage. Some authors pro-

Table 1
Classification results (CCR) of SIMCA based on LOOCV for
the models obtained with different numbers of PCs (separated
by ‘/’) for the raw log (1/R) dataa

Number of CCR, 95% CCR, 99%
levellevelPCs

1 0.76 (4) 0.82 (3)Class 1
1Class 2 0.81 (3) 0.88 (2)

0.84 (3)2 0.74 (5)Class 3
0.86 (3) 0.95 (1)Class 4 1
0.8/0.67 (3/5) 0.87/0.67 (2/5)Class 5 2/3

0.78/0.72 (4/5)0.67/0.72 (6/5)Class 6 2/3
Class 7 2 0.67 (5) 0.73 (4)

2/3Class 8 0.82/0.71 (3/5) 0.82/0.71 (3/5)
Class 9 1 0.89 (2)0.84 (3)
Class 10 0.76 (4)2 0.94 (1)

a The number of rejected samples per class is indicated
between brackets.
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Table 2
Classification results (CCR) of SIMCA based on LOOCV for the models obtained with different numbers of PCs (separated by ‘/’)
for the SNV transformed dataa

Number of PCs CCR, 95% level CCR, 99% level

3 0.82 (3) 0.88 (2)Class 1
0.88/0.81/0.63/0.69 (2/3/6/5)0.68/0.63/0.44/0.63 (5/6/9/6)Class 2 3/4/5/6

1 0.79 (4)Class 3 0.90 (2)
3/4 0.68/0.68 (7/7)Class 4 0.68/0.68 (7/7)

0.8/0.67/0.73 (3/5/4) 0.87/0.8/0.8 (2/3/3)3/4/5Class 5
2 0.78 (4)Class 6 0.78 (4)

0.87/0.73 (2/4) 0.87/0.8 (2/3)Class 7 1/2
3/4 0.65/0.65 (6/6)Class 8 0.88/0.77 (2/4)
3/4 0.68/0.74 (6/5)Class 9 0.74/0.74 (5/5)

0.94 (1) 0.94 (1)Class 10 2

a The number of rejected samples per class is indicated between brackets.

pose to develop stable models by deleting all
outliers and by repeating the model for the re-
maining objects [19]. However, in this application
no objects should be removed, since the data set
represents real world variations. As more samples
are included in the data set, better classification
results will be obtained with SIMCA.

SIMCA’s sensitivity towards dissimilarities can
be related to the parametric character of the
method, using the F-test as statistical tool for
determining outliers. Parametric methods assume
that the data population is normally distributed.
This assumption is however not fulfilled for some
of the excipient classes, where several excipient
grades are summarised within one class. This
might explain the too large a-errors.

As described in the theory section on SIMCA
(Section 2.3), an important factor for the classifi-
cation seems to be the number of PCs included in
the SIMCA models. The classification results
show, that models established with different num-
bers of PCs lead to different success rates. It still
is a difficult task to determine the correct number
of latent variables, and no general rules are given.

Another reason for the too high rejection rate is
the way the confidence limits are constructed. In
the original SIMCA, as applied here, they are
built by using the fitted scores of the training set.
For the identification of new objects the predicted
scores are used to compute the distance to the
class model in the space of the residual PCs. Due
to the properties of least-square methods (here

PCA) the fitted measures, i.e. residuals and also
residual scores, are always smaller than the pre-
dicted ones. Consequently, they should not be
directly compared. If one does so anyway, the
a-error in prediction is too high, since the width
of the class cylinder is too narrow. This problem
has been discussed previously in the literature
[12–14], but does not seem to have been consid-
ered in applications. Research on how to over-
come this is now in progress.

The evaluation of the b-error in such a classifi-
cation system is an important point. This is done
by subjecting the objects belonging to any other
class to the model of the class under investigation,
to check whether some of these samples would be
wrongly identified as belonging to it. None of
these objects was wrongly identified, so that the
b-error is equal to zero. This is an important
result in the application of SIMCA for the iden-
tification of excipients. Indeed, b-errors have to
be avoided, as this type of error would present
significant concern. Since the b-error is equal to
zero even at the 99% confidence level, this confi-
dence level is preferred, in order to minimise the
a-errors.

It was investigated whether pre-processing has
an influence on the performance of SIMCA. This
was of special interest, since the excipients should
be classified based on their chemical structure.
Pre-processing is a possible way to avoid prob-
lems occurring due to different particle sizes of
powders. For this reason the data analysis is
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Table 3
Classification results (CCR) of SIMCA based on LOOCV for the models obtained with different numbers of PCs (separated by ‘/’)
for the second derivative transformed dataa

CCR, 95% level CCR, 99% levelNumber of PCs

3/4/5/6/7 0.82/1/1/1/1 (3/–/–/–/–) 0.88/1/1/1/1 (2/–/–/–/–)Class 1
2/3/4 0.75/0.75/0.75 (4/4/4)Class 2 0.63/0.69/0.69 (6/5/5)
1/2/3 0.79/0.74/0.68 (4/5/6)Class 3 0.84/0.79/0.74 (3/4/5)
1/2/3 0.82/0.68/0.77 (4/7/5)Class 4 0.95/0.73/0.82 (1/6/4)

0.67/0.67 (5/5) 0.87/0.67 (2/5)3/4Class 5
2/3/4 0.89/0.72/0.72 (2/5/5)Class 6 0.89/0.78/0.83 (2/4/3)

0.8/0.73/0.67 (3/4/5) 0.87/0.8/0.73 (2/3/4)Class 7 2/3/4
2/3 0.71/0.76 (5/4)Class 8 0.76/0.76 (4/4)
1/2 0.79/0.68 (4/6)Class 9 0.79/0.74 (4/5)

0.82/0.88 (3/2) 0.82/0.88 (3/2)Class 10 2/3

a The number of rejected samples per class is indicated between brackets.

repeated on SNV and second derivative pre-pro-
cessed data. The results are summarised in Table
2 for the SNV data and in Table 3 for the second
derivative data.

It is evident that after pre-processing the major
variance explained in the PCs is often not only
described by the first or first two latent variables,
as it is the case for the original data, but that it is
distributed over several PCs. As a result models
with more PCs are constructed when the data are
pre-processed. Since the dominant variance in the
spectra of one class is removed by pre-processing
(offset, baseline drift) the data are more similar.
Therefore the individual PCs for one class explain
less variance, than before pre-treatment. As was
described for the original raw data, latent vari-
ables containing only a small part of the total
variance, but more than 1% (1–2%), were re-
moved and the models were repeated. In the table
the results for the different dimensionalities are
again separated by a’/’. In most cases the more
parsimonious models with fewer PCs again lead
to better results and are preferred. The a-errors
are comparable to those achieved with the origi-
nal data. In SIMCA the confidence interval is
built based on the data-variance in the space of
the residual PCs. If the data are more or less
homogeneous (for instance after pre-processing)
the variance is small and so is the confidence
interval, so that even very small deviations lead to
rejection. Pre-processing removes some general

undesirable effects due to the measurement proce-
dure and the sample itself, but cannot eliminate
inhomogeneities in the data, as for instance, natu-
ral acceptable variations of the moisture content.
In our data set there is still a natural heterogene-
ity within most classes, since the samples are
coming from different batches and suppliers.

The main effect of pre-processing in the context
of SIMCA is not to decrease the a-error, but to
influence the b-error where necessary. However,
the b-error with raw data was already excellent,
since it was zero. To evaluate whether this re-
mains so with the transformed data, all samples
from the other classes were again subjected to the
class model under investigation. None of the ob-
jects were wrongly classified, i.e. the b-error is
again equal to zero. Pre-processing decreases the
within-class variance and increases the between-
class variance, so that the b-error could be re-
duced if needed. In order to demonstrate this
relationship, the Fisher criterion (FC) is used [20].
The FC describes the ratio of between-class vari-
ance/within-class variance for each variable. Fig.
7(a,c) shows the superposed original and SNV
spectra of class 2, and class 4, respectively. The
spread of the original spectra of class 4 is much
larger compared to that for class 2, after transfor-
mation the spreads are strongly reduced and al-
most comparable for both, and their
between-class variance is increased (see Fig. 7b,d).
In the case of the original data, there is only one
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Fig. 7. Spectra for class 2 and class 4 obtained from (a) original data and (c) SNV data, corresponding FC obtained from (b) original
data and (d) SNV data.

spectral region with discriminating power, situ-
ated around wavelength 1940 nm, one of the
characteristic spectral regions where water ab-
sorbs. For the SNV data, the FC is much larger
for almost all variables. The magnitude of the
criterion, after applying SNV, is about 100 times
increased. Although in this application the b-er-
ror remains unchanged after transforming the
data, increasing the between-class variance by pre-
processing is still useful, if in a later stage addi-
tional classes of excipients would be included in
the classification system. Thereby the risk of over-
lapping classes would then be diminished.

4. Conclusions

NIR combined with SIMCA in its original
form is used to identify the samples of an excipi-
ent data set. PCs containing more than 1% of the
total variance are retained for building the model,
while the residual PCs are used for the construc-
tion of the confidence limits. Two confidence lev-
els, 95 and 99%, are selected to establish the
confidence limits around the PC model. For both
levels, the b-error, i.e. the wrong identification of
samples, is equal to zero. Therefore it is proposed
to work at a confidence level of 99%, since in this
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situation the a-error is smaller. About 15% of the
samples are rejected from their own classes (a-er-
ror), although they have all passed the compen-
dial tests. Several reasons are given for explaining
the high rejection rate. On the one hand they are
mainly data related, i.e. the heterogeneous nature
of the NIR spectra from different batches and
suppliers and the limited number of objects avail-
able to build the model. On the other hand they
are due to the pattern recognition method, i.e. its
parametric character, the number of latent vari-
ables used for modelling and the way the confi-
dence limits are constructed, namely with the use
of the fitted scores.

To decrease the a-error several solutions can be
proposed. Since one of the reasons for a high
a-error is the natural heterogeneity of the data,
one has to deal with this situation. It might be
useful to measure several samples for each batch
to increase the number of objects available when
building the model. This could give a better esti-
mate of the variability of the material and less
extreme objects might be found. In time, also new
incoming samples should be included in the data-
base, in order to make the database as representa-
tive as possible. This too would probably lead to
a smaller rejection rate. More elaborate al-
gorithms of SIMCA, focusing on the way the
confidence limits are constructed, may also solve
part of the problem.

The b-error in the data analysis is zero, which
is an important result, since it means that, if the
substance is accepted to be a certain excipient,
this conclusion is never wrong. However, the b-
error was only tested by predicting samples from
other present excipient classes by the models. This
can be considered as a first stage of validating the
database. For actually using the method in a
quality control laboratory further tests are re-
quired, such as submitting excipient samples
which are out of specification to the database or
contaminated samples. It has also to be kept in
mind, that NIR spectroscopy alone should not be
used for the identification of inorganic materials.
For these substances b-errors may occur due to a
lack of characteristic spectral features.

Pre-processing of the spectra does not influence
the results here, but seems nevertheless useful. It
removes physical spectral information (due to
particle size), so that the models are build based
on mainly chemical spectral information. More-
over it increases the between-class variance. This
is necessary to decrease a possible b-error if in a
later step more classes would be included in the
identification system or contaminated samples
would be analysed.
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